Malonyl-CoA synthetase, encoded by ACYL ACTIVATING ENZYME13, is essential for growth and development of Arabidopsis.
نویسندگان
چکیده
Malonyl-CoA is the precursor for fatty acid synthesis and elongation. It is also one of the building blocks for the biosynthesis of some phytoalexins, flavonoids, and many malonylated compounds. In plants as well as in animals, malonyl-CoA is almost exclusively derived from acetyl-CoA by acetyl-CoA carboxylase (EC 6.4.1.2). However, previous studies have suggested that malonyl-CoA may also be made directly from malonic acid by malonyl-CoA synthetase (EC 6.2.1.14). Here, we report the cloning of a eukaryotic malonyl-CoA synthetase gene, Acyl Activating Enzyme13 (AAE13; At3g16170), from Arabidopsis thaliana. Recombinant AAE13 protein showed high activity against malonic acid (K(m) = 529.4 ± 98.5 μM; V(m) = 24.0 ± 2.7 μmol/mg/min) but little or no activity against other dicarboxylic or fatty acids tested. Exogenous malonic acid was toxic to Arabidopsis seedlings and caused accumulation of malonic and succinic acids in the seedlings. aae13 null mutants also grew poorly and accumulated malonic and succinic acids. These defects were complemented by an AAE13 transgene or by a bacterial malonyl-CoA synthetase gene under control of the AAE13 promoter. Our results demonstrate that the malonyl-CoA synthetase encoded by AAE13 is essential for healthy growth and development, probably because it is required for the detoxification of malonate.
منابع مشابه
The effects of ginsenoside Rb1 on fatty acid β-oxidation, mediated by AMPK, in the failing heart
Objective(s): This study intended to investigate the effects of Ginsenoside-Rbl (Gs-Rbl) on fatty acid β-oxidation (FAO) in rat failing heart and to identify potential mechanisms of Gs-Rbl improving heart failure (HF) by FAO pathway dependent on AMP-activated protein kinase (AMPK). Materials and Methods: Rats with chronic HF, induced by adriamycin (Adr), were randomly grouped into 7 groups. Gs-...
متن کاملA previously unknown oxalyl-CoA synthetase is important for oxalate catabolism in Arabidopsis.
Oxalate is produced by several catabolic pathways in plants. The best characterized pathway for subsequent oxalate degradation is via oxalate oxidase, but some species, such as Arabidopsis thaliana, have no oxalate oxidase activity. Previously, an alternative pathway was proposed in which oxalyl-CoA synthetase (EC 6.2.1.8) catalyzes the first step, but no gene encoding this function has been fo...
متن کاملLAP6/POLYKETIDE SYNTHASE A and LAP5/POLYKETIDE SYNTHASE B encode hydroxyalkyl α-pyrone synthases required for pollen development and sporopollenin biosynthesis in Arabidopsis thaliana.
Plant type III polyketide synthases (PKSs) catalyze the condensation of malonyl-CoA units with various CoA ester starter molecules to generate a diverse array of natural products. The fatty acyl-CoA esters synthesized by Arabidopsis thaliana ACYL-COA SYNTHETASE5 (ACOS5) are key intermediates in the biosynthesis of sporopollenin, the major constituent of exine in the outer pollen wall. By coexpr...
متن کاملThe acyl-CoA synthetase encoded by LACS2 is essential for normal cuticle development in Arabidopsis.
Long-chain acyl-CoA synthetase (LACS) activities are encoded by a family of at least nine genes in Arabidopsis (Arabidopsis thaliana). These enzymes have roles in lipid synthesis, fatty acid catabolism, and the transport of fatty acids between subcellular compartments. Here, we show that the LACS2 gene (At1g49430) is expressed in young, rapidly expanding tissues, and in leaves expression is lim...
متن کاملRalstonia solanacearum RSp0194 Encodes a Novel 3-Keto-Acyl Carrier Protein Synthase III
Fatty acid synthesis (FAS), a primary metabolic pathway, is essential for survival of bacteria. Ralstonia solanacearum, a β-proteobacteria member, causes a bacterial wilt affecting more than 200 plant species, including many economically important plants. However, thus far, the fatty acid biosynthesis pathway of R. solanacearum has not been well studied. In this study, we characterized two form...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 23 6 شماره
صفحات -
تاریخ انتشار 2011